Weather 101 # Damage Surveys and the Enhanced Fujita Scale Matt Reagan NWS Nashville ### Outline - ➤ When do damage surveys occur? - > Tornado vs straight line winds - > Enhanced Fujita Scale history - ➤ How to use the Enhanced Fujita Scale - How tornadoes receive their rating # March 2-3, 2020 ### **Post Storm Priorities** - Provide support to post storm recovery efforts - Gather additional storm reports and follow up on significant damage reports - Coordinate damage surveys with EMA - Complete initial surveys and provide public statement - > Fulfill any media requests - Perform post-event radar analysis and determine if any other surveys need to be completed ### How is a Final Determination Made? The determination of whether damage was caused by a tornado and if so, the strength of the tornado, is made by considering all evidence Eye Witness Reports + Radar Evidence + Damage Evidence = Final Conclusion # What's Taking Them So Long?! - Surveys are not performed until search and rescues are completed - Storm surveys can be a full day or multiday task. Daylight is valuable - Tornado/straight line wind determination and EF designation likely not done on site. - Review damage and radar - > Interoffice discussion - Collaboration with neighboring offices ### Straight Line vs Tornado Damage - Straight Line Wind Damage - Damage direction is unidirectional - Usually widespread with the exception of microbursts ### Straight Line Winds ### Straight Line vs Tornado Damage - > Straight Line Wind Damage - Damage direction is unidirectional - Usually widespread with the exception of microbursts - Microbursts damage can be divergent ### Straight Line Winds ### Straight Line vs Tornado Damage - Straight Line Wind Damage - Damage direction is unidirectional - Usually widespread with the exception of microbursts - Microbursts damage can be divergent - > Tornado Damage - Concentrated path of damage - Convergent damage pattern ### Tornado ### Damage Associated with Weak QLCS Tornadoes - Narrow path of concentrated damage - > 80 − 90 mph - ➤ All damage blown E/NE ### Damage Associated with Weak QLCS Tornadoes - Narrow path of concentrated damage - > 70 -80 mph ### Damage Associated with Weak QLCS Tornadoes ### March 2-3, 2020- Damage Pattern ### History of the Enhanced Fujita Scale - ➤ Ted Fujita born in Japan, moved to Chicago after World War 2 - Began surveying damage after nuclear bomb was dropped on Nagasaki - Created Fujita Scale while at the University of Chicago ## History of the Enhanced Fujita Scale - ➤ Ted Fujita born in Japan, moved to Chicago after World War 2 - Began surveying damage after nuclear bomb was dropped on Nagasaki - Created Fujita Scale while at the University of Chicago - Fujita Scale widely accepted after the April 3-4, 1974 tornado outbreak Fujita Scale was updated to adjust wind speeds and renamed Enhance Fujita Scale ### Adjustment of the Fujita Scale - Fujita scale was updated in 2007 by a team of meteorologists and engineers - Original wind speeds were found to be too high - Additional damage indicators were added - Another update of the enhanced Fujita scale is expected in the next few years | FUJITA SCALE | | | | | | | | | | |--------------|------------------------|---------------------|--|--|--|--|--|--|--| | F Number | Fastest 1/4-mile (mph) | 3 Second Gust (mph) | | | | | | | | | 0 | 40-72 | 45-78 | | | | | | | | | 1 | 73-112 | 79-117 | | | | | | | | | 2 | 113-157 | 118-161 | | | | | | | | | 3 | 158-207 | 162-209 | | | | | | | | | 4 | 208-260 | 210-261 | | | | | | | | | 5 | 261-318 | 262-317 | | | | | | | | | OPERATIONAL EF SCALE | | | | | | |----------------------|---------------------|--|--|--|--| | EF Number | 3 Second Gust (mph) | | | | | | 0 | 65-85 | | | | | | 1 | 86-110 | | | | | | 2 | 111-135 | | | | | | 3 | 136-165 | | | | | | 4 | 166-200 | | | | | | 5 | Over 200 | | | | | ### How Does the Enhanced Fujita Scale Work? - ➤ The Enhanced Fujita Scale is a set of wind estimates based on damage - Damage indicators- What was damaged? #### 4. MANUFACTURED HOME – DOUBLE WIDE (MHDW) - · Steel undercarriage supported on concrete block piers - · Multi-unit connection at roof, floor, and end walls - Frame straps and ground anchors spaced at 10 12 ft apart - Flat, gable, or hip roof shape - Asphalt shingles or metal roof panels - · Plywood/OSB roof decking - Wood rafter or shallow joist construction - Metal, vinyl, or wood siding ### How Does the Enhanced Fujita Scale Work? - ➤ The Enhanced Fujita Scale is a set of wind estimates based on damage - Damage indicators- What was damaged? - Degree of Damage- How much damage was done? #### 4. MANUFACTURED HOME – DOUBLE WIDE (MHDW) - · Steel undercarriage supported on concrete block piers - Multi-unit connection at roof, floor, and end walls - Frame straps and ground anchors spaced at 10 12 ft apart - Flat, gable, or hip roof shape - Asphalt shingles or metal roof panels - Plywood/OSB roof decking - · Wood rafter or shallow joist construction - Metal, vinyl, or wood siding | DOD* | Damage description | |------|---| | 1 | Threshold of visible damage | | 2 | Loss of shingles or other roof covering (<20%) | | 3 | Damaged porches or carports | | 4 | Broken windows | | 5 | Uplift of roof deck and loss of significant roof covering material (>20%) | | 6 | Complete uplift of roof; most walls remain standing | | 7 | Unit slides off CMU block piers | | 8 | Removal of entire roof structure leaving most walls standing | | 9 | Complete destruction of roof and walls leaving undercarriage in place | | 10 | Unit rolls, displaces or vaults | | 11 | Undercarriage separates from floor, rolls and tumbles, badly bent | | 12 | Complete destruction of unit; debris blows away | ### How Does the Enhanced Fujita Scale Work? - ➤ The Enhanced Fujita Scale is a set of wind estimates based on damage - Damage indicators- What was damaged? - Degree of Damage- How much damage was done? - Quality of Construction- Is the construction what you expect? #### 4. MANUFACTURED HOME – DOUBLE WIDE (MHDW) - · Steel undercarriage supported on concrete block piers - Multi-unit connection at roof, floor, and end walls - Frame straps and ground anchors spaced at 10 12 ft apart - Flat, gable, or hip roof shape - Asphalt shingles or metal roof panels - · Plywood/OSB roof decking - · Wood rafter or shallow joist construction - Metal, vinyl, or wood siding | DOD* | Damage description | EXP | LB | UB | |------|---|-----|-----|-----| | 1 | Threshold of visible damage | 61 | 51 | 76 | | 2 | Loss of shingles or other roof covering (<20%) | 76 | 62 | 88 | | 3 | Damaged porches or carports | 78 | 67 | 96 | | 4 | Broken windows | 83 | 68 | 95 | | 5 | Uplift of roof deck and loss of significant roof covering material (>20%) | 88 | 75 | 108 | | 6 | Complete uplift of roof; most walls remain standing | 93 | 77 | 110 | | 7 | Unit slides off CMU block piers | 94 | 78 | 109 | | 8 | Removal of entire roof structure leaving most walls standing | 97 | 80 | 117 | | 9 | Complete destruction of roof and walls leaving undercarriage in place | 113 | 93 | 131 | | 10 | Unit rolls, displaces or vaults | 114 | 82 | 130 | | 11 | Undercarriage separates from floor, rolls and tumbles, badly bent | 127 | 109 | 145 | | 12 | Complete destruction of unit; debris blows away | 134 | 119 | 154 | ### March 2-3, 2020 Survey- Residences ### March 2-3, 2020 Survey-Residences EXP LB ### March 2-3, 2020 Survey-Residences ### March 2-3, 2020 Survey- Residences ### March 2-3, 2020 Survey- Residences #### 3. MANUFACTURED HOMES - SINGLE WIDE (MHSW) - · Steel undercarriage supported on concrete block piers - · Metal straps and ground anchors (Frame and/or over-the-top strap anchors - · Asphalt shingles or one-piece metal roof covering - · Wood roof joists - Metal, vinyl, or wood siding - Wood roof joists - Wood stud walls and partitions - Better construction in post 1974 models in coastal areas | hors | | | | |--|----------|-----------------------|--| | XP | LB | UB | | | 74 | 51
61 | UB
76
92
103 | | | 87 | 72 | 103 | | | XP
61
74
87
89
98
05
09
18
27 | 73 | 112 | | | 98 | 84 | 112
114
123 | | | 05 | 84
87 | 123 | | | 09 | 96 | 128 | | | 18 | 101 | 136 | | | 2/ | 110 | 148 | | | DOD* | Damage description | EXP | LB | UB | |------|--|-----|-----|-----| | 1 | Threshold of visible damage | 61 | 51 | 76 | | 2 | Loss of shingles or partial uplift of one-piece metal roof covering | 74 | 61 | 92 | | 3 | Unit slides off block piers but remains upright | 87 | 72 | 103 | | 4 | Complete uplift of roof; most walls remain standing | 89 | 73 | 112 | | 5 | Unit rolls on its side or upside down; remains essentially intact | 98 | 84 | 114 | | 6 | Destruction of roof and walls leaving floor and undercarriage in place | 105 | 87 | 123 | | 7 | Unit rolls or vaults: roof and walls separate from floor and undercarriage | 109 | 96 | 128 | | 8 | Undercarriage separates from unit; rolls, tumbles and is badly bent | 118 | 101 | 136 | | 9 | Complete destruction of unit; debris blown away | 127 | 110 | 148 | | | | | | | ### March 2-3, 2020 Survey- Trees ### March 2-3, 2020 Survey- Tree Construction?! 27. TREES: HARDWOOD | | Typical Construction • Hardwood: Oak, Maple, Bir | ch, Ash | | | | | |------|--|---------|-----|-----|--|------------| | DOD* | Damage description | EXP | LB | UB | | | | 1 | Small limbs broken (up to 1" diameter) | 60 | 48 | 72 | STATE OF THE PROPERTY P | No. | | 2 | Large branches broken (1"-3" diameter) | 74 | 61 | 88 | | | | 3 | Trees uprooted | 91 | 76 | | 而从一个企工人。这种《创一/图》(/ANN MIN / 例》)《数字》,亦是自己的是写 | THE WAY | | 4 | Trunks snapped | 110 | 93 | 134 | | 经验的 | | 5 | Trees debarked with only stubs of largest branches remaining | 143 | 123 | 167 | | | | | | · | | | | | ### March 2-3, 2020 Survey- Schools #### 15. ELEMENTARY SCHOOL (ES) #### General Description DOD* 3 6 | Damage description EXP LB UB Threshold of visible damage 65 47 80 Loss of roof covering (<20%) 79 66 99 Broken windows 87 71 106 Exterior door failures 99 85 118 Uplift of some roof decking; significant loss of roofing material (>20%); loss of rooftop HVAC 101 82 121 Damage to or loss of wall cladding 108 92 127 Uplift or collapse of roof structure 125 108 148 Collapse of load-bearing walls 139 117 162 Collapse of load-bearing walls 153 130 170 Total decrease continue of a large section of lavidance or entern wilding 176 176 | These buildings are typically single story with flat roofs Building may contain a small gym or cafeteria with moderately long spans between supports Buildings have long interior hallways with bearing or non-bearing walls BUR, single-ply membrane, or metal standing seam roof panels Metal or plywood roof decking supporting a light-weight poured gypsum deck Roof structure consists of open web steel joists bearing on exterior walls an steel interior girders Exterior non-bearing walls constructed with CMUs, glass curtain walls or metal studs with brick veneer, stucco, or EIFS cladding CMU bearing walls with brick veneer, stucco, or EIFS cladding Walls can have a large percentage of window glass | d | | | | |--|--|--------|-------|---------|--| | Loss of roof covering (<20%) 79 66 99 Broken windows 87 71 106 Exterior door failures 99 85 118 Uplift of some roof decking; significant loss of roofing material (≥20%); loss of rooffop HVAC 101 82 121 Damage to or loss of wall cladding 108 92 127 Uplift or collapse of roof structure 125 108 148 Collapse of non-bearing walls 139 117 162 Collapse of load-bearing walls 153 130 180 | | | 4.79 | 1000 | | | Broken windows 87 71 106 | | | | | | | Exterior door failures Uplift of some roof decking; significant loss of roofing material (>20%); loss of rooftop HVAC Damage to or loss of wall cladding Uplift or collapse of roof structure 125 Uplift or collapse of non-bearing walls Collapse of load-bearing walls 130 180 | * | | | | | | Uplift of some roof decking; significant loss of roofing material (>20%); loss of rooftop HVAC Damage to or loss of wall cladding Uplift or collapse of roof structure 125 Collapse of non-bearing walls 139 117 162 Collapse of load-bearing walls 153 130 180 | 1, 11, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13 | | | | | | (>20%); loss of rooftop HVAC 101 82 121 Damage to or loss of wall cladding 108 92 127 Uplift or collapse of roof structure 125 108 148 Collapse of non-bearing walls 139 117 162 Collapse of load-bearing walls 153 130 180 | | 99 | 85 | 118 | | | (>20%); loss of rooftop HVAC 101 82 121 Damage to or loss of wall cladding 108 92 127 Uplift or collapse of roof structure 125 108 148 Collapse of non-bearing walls 139 117 162 Collapse of load-bearing walls 153 130 180 | Uplift of some roof decking; significant loss of roofing material | 107700 | Y4038 | 100 100 | | | Uplift or collapse of roof structure 125 108 148 Collapse of non-bearing walls 139 117 162 Collapse of load-bearing walls 153 130 180 | | | | | | | Collapse of non-bearing walls Collapse of load-bearing walls 139 117 162 Collapse of load-bearing walls 153 130 180 | | | | | | | Collapse of load-bearing walls 153 130 180 | | | | | | | | | | | | | | Total destruction of a large section of hydding or entire hydding 176 152 202 | | 153 | 130 | 180 | | | Total destruction of a large section of ounding of entire ounding 170 132 203 | Total destruction of a large section of building or entire building | 176 | 152 | 203 | | ### Determining Width and Strength of Tornado - The strength assigned to a tornado path is the maximum strength through the entire track. - The width of the tornado is the maximum width along the entire track. ### March 3rd Tornadoes- Nashville - > Rating: EF-3 (165 mph) - Max width: 1600 yards (~ 0.9 miles wide) - > Path length: 60.13 miles - > 5 fatalities - 220 injuries ### March 3rd Tornadoes- Cookeville > Rating: EF-4 (175 mph) ➤ Max width: 900 yards (~ 0.5 miles wide) ➤ 87 injuries > Path length: 8.39 miles > 19 fatalities